Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049320

RESUMO

Global-warming-induced climate changes and socioeconomic issues increasingly stimulate reviews of renewable energy. Among energy-generation devices, solar cells are often considered as renewable sources of energy. Lately, transparent conducting oxides (TCOs) are playing a significant role as back/front contact electrodes in silicon heterojunction solar cells (SHJ SCs). In particular, the optimized Sn-doped In2O3 (ITO) has served as a capable TCO material to improve the efficiency of SHJ SCs, due to excellent physicochemical properties such as high transmittance, electrical conductivity, mobility, bandgap, and a low refractive index. The doped-ITO thin films had promising characteristics and helped in promoting the efficiency of SHJ SCs. Further, SHJ technology, together with an interdigitated back contact structure, achieved an outstanding efficiency of 26.7%. The present article discusses the deposition of TCO films by various techniques, parameters affecting TCO properties, characteristics of doped and undoped TCO materials, and their influence on SHJ SC efficiency, based on a review of ongoing research and development activities.

2.
Nat Commun ; 10(1): 2959, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273214

RESUMO

For kesterite copper zinc tin sulfide/selenide (CZTSSe) solar cells to enter the market, in addition to efficiency improvements, the technological capability to produce flexible and large-area modules with homogeneous properties is necessary. Here, we report a greater than 10% efficiency for a cell area of approximately 0.5 cm2 and a greater than 8% efficiency for a cell area larger than 2 cm2 of certified flexible CZTSSe solar cells. By designing a thin and multi-layered precursor structure, the formation of defects and defect clusters, particularly tin-related donor defects, is controlled, and the open circuit voltage value is enhanced. Using statistical analysis, we verify that the cell-to-cell and within-cell uniformity characteristics are improved. This study reports the highest efficiency so far for flexible CZTSSe solar cells with small and large areas. These results also present methods for improving the efficiency and enlarging the cell area.


Assuntos
Metais/química , Energia Solar , Espectrometria por Raios X
3.
ChemSusChem ; 11(20): 3679-3688, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30134016

RESUMO

Cu(In,Ga)(S,Se)2 (CIGS) is a promising photocathode material owing to its high absorption coefficient, adjustable band gap, and suitable band edge for the hydrogen evolution reaction (HER). However, most CIGS photocathodes have suffered from instability in applications that require a wide range of pH conditions and have utilized noble metal HER catalysts to achieve a high performance. Thus, improving the durability of the CIGS photocathode under various pH conditions and developing a cost-effective non-noble metal catalyst are critical issues in the photoelectrochemical (PEC) application of this promising photocathode material. Here, we catalyze the CIGS photocathode with Ni-Mo as a non-noble metal to enhance the PEC efficiency, and we employ atomically grown TiO2 to passivate the CdS/CIGS surface and improve the stability under a wide range of pH conditions. Our Ni-Mo alloy exhibits the best HER catalytic activity among reported earth-abundant HER catalysts in both acidic and alkaline solutions. The Ni-Mo/CdS/CIGS photocathode yields an onset potential of 0.5 V (vs. RHE) and a short-circuit photocurrent density as high as 15-25 mA cm-2 under various pH conditions ranging from 0.4 to 14, which is highly comparable to that of Pt/CdS/CIGS. Furthermore, the passivation of CdS/CIGS with a thin TiO2 layer, obtained by atomic layer deposition, effectively prevents the photocorrosion of CdS and the dissolution of the Mo back contact, which are the main causes of the degradation of the photocathode. The optimized Ni-Mo/TiO2 /CdS/CIGS photocathode produces a stable photocurrent density at 0 VRHE for 100 minutes except under strong alkaline conditions. The current work presents a very useful method to improve the efficiency and durability of the CIGS photocathodes with an earth-abundant metal catalyst, which completely replaces Pt.

4.
J Nanosci Nanotechnol ; 16(5): 5053-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483870

RESUMO

Wide bandgap Cu(In,Ga)Se2 (CIGS) thin films were deposited on Ga-rich Ga:ZnO (GZO) or MoN/GZO by single-stage co-evaporation. CIGS/TCO interface phases, such as resistive n-type Ga2O3, which are likely to have formed during the high temperature growth of Ga-rich CIGS, can deteriorate the solar cell performance. Although some Ga accumulation was observed in both of the CIGS/GZO and CIGS/MoN/GZO interfaces formed at 520 degrees C, the Ga oxide layer was absent. On the other hand, their current-voltage characteristics showed strong roll-over behavior regardless of the MoN diffusion barrier. The strong Schottky barrier formation at the CLGS/GZO junction due to the low work function of GZO, was attributed to current blocking at a high forward bias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...